Улучшения YOLOv8: введение CVPR 2023 BiFormer, построение эффективной пирамидальной сетевой архитектуры, основанной на динамическом разреженном внимании, с очевидными преимуществами для небольших целей.
Улучшения YOLOv8: введение CVPR 2023 BiFormer, построение эффективной пирамидальной сетевой архитектуры, основанной на динамическом разреженном внимании, с очевидными преимуществами для небольших целей.

1.Введение в BiFormer

бумага:https://arxiv.org/pdf/2303.08810.pdf

Справочная информация: Механизм внимания является одним из основных строительных блоков Vision Transformer и может фиксировать долгосрочные зависимости. Однако эта мощная функция сопряжена с огромными вычислительными нагрузками и затратами памяти из-за необходимости вычислять попарные взаимодействия токенов между всеми пространственными местоположениями. Чтобы облегчить эту проблему, в ряде работ предпринимаются попытки решить эту проблему путем введения во внимание созданной вручную и независимой от содержания разреженности, например, ограничение операций внимания локальными окнами, осевыми полосами или расширенными окнами.

Метод этой статьи: В этой статье предлагается двухуровневый метод маршрутизации с динамическим разреженным вниманием. Для запроса нерелевантные пары ключ-значение сначала отфильтровываются на грубом уровне региона, а затем применяется детальное внимание от токена к токену к объединению оставшихся регионов-кандидатов (т. е. регионов маршрутизации). Предлагаемая двухуровневая маршрутизация имеет простую, но эффективную реализацию, использует разреженность для экономии вычислений и памяти и включает только умножение плотных матриц, дружественное к графическому процессору. На этой основе был построен новый универсальный Vision Transformer под названием BiFormer.

Среди них рисунок (a) представляет собой оригинальную реализацию внимания, которая работает непосредственно в глобальном масштабе, что приводит к высокой вычислительной сложности и большому использованию памяти, тогда как на рисунках (b)–(d) эти методы реализованы путем введения различных руководств; Режимы разреженного внимания используются для уменьшения сложности, например локальных окон, осевых полос и расширенных окон, тогда как рисунок (e) основан на деформируемом внимании с помощью нерегулярных сеток для достижения адаптивной разреженности изображения. ручной работы и Ничего общего с контентом Разреженность введена в механизм внимания, чтобы попытаться облегчить эту проблему. поэтому,Эта статья написана с помощью двойногослоймаршрутизация(bi-level routing)предложил романиздинамическое скудное внимание(dynamic sparse attention ),для достижения большей гибкостиизРассчитать распределениеиосведомленность о содержании,Сделайте его динамичным и разреженным с учетом запросов.,Как показано на рисунке (f).

на основеBRAмодуль,В этой статье строится романиз Универсальный преобразователь изображенийBiFormer。Как показано на картинке выше,который следует за большинствомизvision transformerАрхитектурный дизайн,Он также принимает четырехуровневую пирамидальную структуру.,Это понижение дискретизации в 32 раза.

Конкретно,BiFormerИспользуйте встраивание перекрывающихся блоков на первом этапе.,Используйте модули объединения блоков на втором-четвертом этапах, чтобы уменьшить входное пространственное разрешение.,Увеличение количества каналов одновременно,Затем используйте непрерывныйизBiFormerпреобразование объекта блока。нужно вниманиеизда,в каждом блокеиз开始均да使用 из Глубокие свертки для неявного кодирования информации об относительном положении.。Затем применитеBRAмодульи扩展率为 из 2 слой 多слойперсептрон(Multi-Layer Perceptron, MLP)модуль,Используется отдельно для моделирования взаимосвязей перекрестных позиций и встраивания каждой позиции.

Этот метод имеет лучший эффект обнаружения небольших целей.。可能да因为BRAмодульдана основе稀疏采样而不да下采样,Во-первых, можно сохранить подробную подробную информацию.,Во-вторых, сумму расчета также можно сохранить.

2. Реализация BiFormer на базе Yolov8

2.1 C2f_BiLevelRoutingAttention、BiFormerприсоединитьсяmodules.pyсередина

Основной код:

Язык кода:javascript
копировать
class BiLevelRoutingAttention(nn.Module):
    """
    n_win: number of windows in one side (so the actual number of windows is n_win*n_win)
    kv_per_win: for kv_downsample_mode='ada_xxxpool' only, number of key/values per window. Similar to n_win, the actual number is kv_per_win*kv_per_win.
    topk: topk for window filtering
    param_attention: 'qkvo'-linear for q,k,v and o, 'none': param free attention
    param_routing: extra linear for routing
    diff_routing: wether to set routing differentiable
    soft_routing: wether to multiply soft routing weights
    """

    def __init__(self, dim, num_heads=8, n_win=7, qk_dim=None, qk_scale=None,
                 kv_per_win=4, kv_downsample_ratio=4, kv_downsample_kernel='ada_avgpool', kv_downsample_mode='identity',
                 topk=4, param_attention="qkv", param_routing=False, diff_routing=False, soft_routing=False,
                 side_dwconv=5,
                 auto_pad=True):
        super().__init__()
        # local attention setting
        self.dim = dim
        self.n_win = n_win  # Wh, Ww
        self.num_heads = num_heads
        self.qk_dim = qk_dim or dim

        assert self.qk_dim % num_heads == 0 and self.dim % num_heads == 0, 'qk_dim and dim must be divisible by num_heads!'

        self.scale = qk_scale or self.qk_dim ** -0.5

        ################side_dwconv (i.e. LCE in ShuntedTransformer)###########
        self.lepe = nn.Conv2d(dim, dim, kernel_size=side_dwconv, stride=1, padding=side_dwconv // 2,
                              groups=dim) if side_dwconv > 0 else \
            lambda x: torch.zeros_like(x)

        ################ global routing setting #################
        self.topk = topk
        self.param_routing = param_routing
        self.diff_routing = diff_routing
        self.soft_routing = soft_routing
        # router
        assert not (self.param_routing and not self.diff_routing)  # cannot be with_param=True and diff_routing=False
        self.router = TopkRouting(qk_dim=self.qk_dim,
                                  qk_scale=self.scale,
                                  topk=self.topk,
                                  diff_routing=self.diff_routing,
                                  param_routing=self.param_routing)
        if self.soft_routing:  # soft routing, always diffrentiable (if no detach)
            mul_weight = 'soft'
        elif self.diff_routing:  # hard differentiable routing
            mul_weight = 'hard'
        else:  # hard non-differentiable routing
            mul_weight = 'none'
        self.kv_gather = KVGather(mul_weight=mul_weight)

        # qkv mapping (shared by both global routing and local attention)
        self.param_attention = param_attention
        if self.param_attention == 'qkvo':
            self.qkv = QKVLinear(self.dim, self.qk_dim)
            self.wo = nn.Linear(dim, dim)
        elif self.param_attention == 'qkv':
            self.qkv = QKVLinear(self.dim, self.qk_dim)
            self.wo = nn.Identity()
        else:
            raise ValueError(f'param_attention mode {self.param_attention} is not surpported!')

        self.kv_downsample_mode = kv_downsample_mode
        self.kv_per_win = kv_per_win
        self.kv_downsample_ratio = kv_downsample_ratio
        self.kv_downsample_kenel = kv_downsample_kernel
        if self.kv_downsample_mode == 'ada_avgpool':
            assert self.kv_per_win is not None
            self.kv_down = nn.AdaptiveAvgPool2d(self.kv_per_win)
        elif self.kv_downsample_mode == 'ada_maxpool':
            assert self.kv_per_win is not None
            self.kv_down = nn.AdaptiveMaxPool2d(self.kv_per_win)
        elif self.kv_downsample_mode == 'maxpool':
            assert self.kv_downsample_ratio is not None
            self.kv_down = nn.MaxPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()
        elif self.kv_downsample_mode == 'avgpool':
            assert self.kv_downsample_ratio is not None
            self.kv_down = nn.AvgPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()
        elif self.kv_downsample_mode == 'identity':  # no kv downsampling
            self.kv_down = nn.Identity()
        elif self.kv_downsample_mode == 'fracpool':
            # assert self.kv_downsample_ratio is not None
            # assert self.kv_downsample_kenel is not None
            # TODO: fracpool
            # 1. kernel size should be input size dependent
            # 2. there is a random factor, need to avoid independent sampling for k and v
            raise NotImplementedError('fracpool policy is not implemented yet!')
        elif kv_downsample_mode == 'conv':
            # TODO: need to consider the case where k != v so that need two downsample modules
            raise NotImplementedError('conv policy is not implemented yet!')
        else:
            raise ValueError(f'kv_down_sample_mode {self.kv_downsaple_mode} is not surpported!')

        # softmax for local attention
        self.attn_act = nn.Softmax(dim=-1)

        self.auto_pad = auto_pad

    def forward(self, x, ret_attn_mask=False):
        """
        x: NHWC tensor

        Return:
            NHWC tensor
        """
        # NOTE: use padding for semantic segmentation
        ###################################################

        if self.auto_pad:
            N, H_in, W_in, C = x.size()



            pad_l = pad_t = 0
            pad_r = (self.n_win - W_in % self.n_win) % self.n_win
            pad_b = (self.n_win - H_in % self.n_win) % self.n_win

            x = F.pad(x, (0, 0,  # dim=-1
                          pad_l, pad_r,  # dim=-2
                          pad_t, pad_b))  # dim=-3
            _, H, W, _ = x.size()  # padded size
        else:
            N, H, W, C = x.size()
            #print(N)
           # print(H)
           # print(W)
           # print(self.n_win)
            assert H % self.n_win == 0 and W % self.n_win == 0  #
        ###################################################

        # patchify, (n, p^2, w, w, c), keep 2d window as we need 2d pooling to reduce kv size
        x = rearrange(x, "n (j h) (i w) c -> n (j i) h w c", j=self.n_win, i=self.n_win)

        #################qkv projection###################
        # q: (n, p^2, w, w, c_qk)
        # kv: (n, p^2, w, w, c_qk+c_v)
        # NOTE: separte kv if there were memory leak issue caused by gather
        q, kv = self.qkv(x)

        # pixel-wise qkv
        # q_pix: (n, p^2, w^2, c_qk)
        # kv_pix: (n, p^2, h_kv*w_kv, c_qk+c_v)
        q_pix = rearrange(q, 'n p2 h w c -> n p2 (h w) c')
        kv_pix = self.kv_down(rearrange(kv, 'n p2 h w c -> (n p2) c h w'))
        kv_pix = rearrange(kv_pix, '(n j i) c h w -> n (j i) (h w) c', j=self.n_win, i=self.n_win)

        q_win, k_win = q.mean([2, 3]), kv[..., 0:self.qk_dim].mean(
            [2, 3])  # window-wise qk, (n, p^2, c_qk), (n, p^2, c_qk)

        ##################side_dwconv(lepe)##################
        # NOTE: call contiguous to avoid gradient warning when using ddp
        lepe = self.lepe(rearrange(kv[..., self.qk_dim:], 'n (j i) h w c -> n c (j h) (i w)', j=self.n_win,
                                   i=self.n_win).contiguous())
        lepe = rearrange(lepe, 'n c (j h) (i w) -> n (j h) (i w) c', j=self.n_win, i=self.n_win)

        ############ gather q dependent k/v #################

        r_weight, r_idx = self.router(q_win, k_win)  # both are (n, p^2, topk) tensors

        kv_pix_sel = self.kv_gather(r_idx=r_idx, r_weight=r_weight, kv=kv_pix)  # (n, p^2, topk, h_kv*w_kv, c_qk+c_v)
        k_pix_sel, v_pix_sel = kv_pix_sel.split([self.qk_dim, self.dim], dim=-1)
        # kv_pix_sel: (n, p^2, topk, h_kv*w_kv, c_qk)
        # v_pix_sel: (n, p^2, topk, h_kv*w_kv, c_v)

        ######### do attention as normal ####################
        k_pix_sel = rearrange(k_pix_sel, 'n p2 k w2 (m c) -> (n p2) m c (k w2)',
                              m=self.num_heads)  # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_kq//m) transpose here?
        v_pix_sel = rearrange(v_pix_sel, 'n p2 k w2 (m c) -> (n p2) m (k w2) c',
                              m=self.num_heads)  # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_v//m)
        q_pix = rearrange(q_pix, 'n p2 w2 (m c) -> (n p2) m w2 c',
                          m=self.num_heads)  # to BMLC tensor (n*p^2, m, w^2, c_qk//m)

        # param-free multihead attention
        attn_weight = (
                                  q_pix * self.scale) @ k_pix_sel  # (n*p^2, m, w^2, c) @ (n*p^2, m, c, topk*h_kv*w_kv) -> (n*p^2, m, w^2, topk*h_kv*w_kv)
        attn_weight = self.attn_act(attn_weight)
        out = attn_weight @ v_pix_sel  # (n*p^2, m, w^2, topk*h_kv*w_kv) @ (n*p^2, m, topk*h_kv*w_kv, c) -> (n*p^2, m, w^2, c)
        out = rearrange(out, '(n j i) m (h w) c -> n (j h) (i w) (m c)', j=self.n_win, i=self.n_win,
                        h=H // self.n_win, w=W // self.n_win)

        out = out + lepe
        # output linear
        out = self.wo(out)


        # NOTE: use padding for semantic segmentation
        # crop padded region
        if self.auto_pad and (pad_r > 0 or pad_b > 0):
            out = out[:, :H_in, :W_in, :].contiguous()

        if ret_attn_mask:
            return out, r_weight, r_idx, attn_weight
        else:
            return out

Подробности исходного кода см.: https://cv2023.blog.csdn.net/article/details/130260561.

Специальный тренировочный лагерь Tencent Technology Creation 2023, Второй выпуск Конкурс эссе, получивший приз, чтобы разделить призовой фонд в 10 000 юаней и часы с клавиатурой

boy illustration
Учебное пособие по Jetpack Compose для начинающих, базовые элементы управления и макет
boy illustration
Код js веб-страницы, фон частицы, код спецэффектов
boy illustration
【новый! Суперподробное】Полное руководство по свойствам компонентов Figma.
boy illustration
🎉Обязательно к прочтению новичкам: полное руководство по написанию мини-программ WeChat с использованием программного обеспечения Cursor.
boy illustration
[Забавный проект Docker] VoceChat — еще одно приложение для мгновенного чата (IM)! Может быть встроен в любую веб-страницу!
boy illustration
Как реализовать переход по странице в HTML (html переходит на указанную страницу)
boy illustration
Как решить проблему зависания и низкой скорости при установке зависимостей с помощью npm. Существуют ли доступные источники npm, которые могут решить эту проблему?
boy illustration
Серия From Zero to Fun: Uni-App WeChat Payment Practice WeChat авторизует вход в систему и украшает страницу заказа, создает интерфейс заказа и инициирует запрос заказа
boy illustration
Серия uni-app: uni.navigateЧтобы передать скачок значения
boy illustration
Апплет WeChat настраивает верхнюю панель навигации и адаптируется к различным моделям.
boy illustration
JS-время конвертации
boy illustration
Обеспечьте бесперебойную работу ChromeDriver 125: советы по решению проблемы chromedriver.exe не найдены
boy illustration
Поле комментария, щелчок мышью, специальные эффекты, js-код
boy illustration
Объект массива перемещения объекта JS
boy illustration
Как открыть разрешение на позиционирование апплета WeChat_Как использовать WeChat для определения местонахождения друзей
boy illustration
Я даю вам два набора из 18 простых в использовании фонов холста Power BI, так что вам больше не придется возиться с цветами!
boy illustration
Получить текущее время в js_Как динамически отображать дату и время в js
boy illustration
Вам необходимо изучить сочетания клавиш vsCode для форматирования и организации кода, чтобы вам больше не приходилось настраивать формат вручную.
boy illustration
У ChatGPT большое обновление. Всего за 45 минут пресс-конференция показывает, что OpenAI сделал еще один шаг вперед.
boy illustration
Copilot облачной разработки — упрощение разработки
boy illustration
Микросборка xChatGPT с низким кодом, создание апплета чат-бота с искусственным интеллектом за пять шагов
boy illustration
CUDA Out of Memory: идеальное решение проблемы нехватки памяти CUDA
boy illustration
Анализ кластеризации отдельных ячеек, который должен освоить каждый&MarkerгенетическийВизуализация
boy illustration
vLLM: мощный инструмент для ускорения вывода ИИ
boy illustration
CodeGeeX: мощный инструмент генерации кода искусственного интеллекта, который можно использовать бесплатно в дополнение к второму пилоту.
boy illustration
Машинное обучение Реальный бой LightGBM + настройка параметров случайного поиска: точность 96,67%
boy illustration
Бесшовная интеграция, мгновенный интеллект [1]: платформа больших моделей Dify-LLM, интеграция без кодирования и встраивание в сторонние системы, более 42 тысяч звезд, чтобы стать свидетелями эксклюзивных интеллектуальных решений.
boy illustration
LM Studio для создания локальных больших моделей
boy illustration
Как определить количество слоев и нейронов скрытых слоев нейронной сети?
boy illustration
[Отслеживание целей] Подробное объяснение ByteTrack и детали кода