Оригинальные улучшения YOLOv8: несколько новых улучшений | Сохранение исходной информации — алгоритм отделяемой по глубине свертки (MDSConv) |
Оригинальные улучшения YOLOv8: несколько новых улучшений | Сохранение исходной информации — алгоритм отделяемой по глубине свертки (MDSConv) |

💡💡💡В этой статье представлены самоисследования, инновации и улучшения: Улучшение 1) Сохранение исходной информации — свертка с разделением по глубине (MDSConv), которая решает проблему невозможности взаимодействия с информацией между исходными каналами векторного слоя (например, классическая сетка с разделением по глубине). свертка);

Улучшение 2) Предложить алгоритм быстрой глобальной пространственной пирамиды рецептивных полей (Improve-SPPF) для интеграции локальных рецептивных полей и глобальных рецептивных полей для уменьшения воздействия различных масштабов;

Улучшение 3) Улучшенная версия CA: решена проблема, связанная с тем, что механизм внимания CA не эффективно использует важную информацию. Поэтому разработана система координатного внимания «включай и работай», которая сочетает в себе среднее и максимальное объединение;

Улучшение 4) На основе улучшенной версии MDSConv и CA создана структура, которая поддерживает исходный уровень разделения глубины информации (MDSLayer) для защиты обширной информации между каналами без ухудшения качества;

включено

YOLOv8 оригинальный и самостоятельно разработанный

💡💡💡Эксклюзивная первая новинка (оригинал) во всей сети, подходит для бумаги! ! !

💡💡💡 Нововведения Саммита компьютерного зрения 2024 года применимы к Yolov5, Yolov7, Yolov8 и другим сериям Yolo. В статье в рубрике представлены все этапы и исходный код, которые помогут вам легко приступить к волшебному изменению сети! ! !

💡💡💡Ключевой момент: прочитав эту колонку, вы также сможете в будущем спроектировать волшебную сеть, выполнять волшебные изменения в разных местах сети (магистральная, головная, обнаружение, потеря и т. д.) для достижения инноваций! ! !

2. Как присоединиться к YOLOv8

2.1 Создайте новый ultralytics/nn/block/MD.py

Язык кода:python
кодКоличество запусков:0
копировать
import torch
from torch import nn
import warnings

class BaseConv(nn.Module):
    def __init__(self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"):
        super().__init__()
        pad         = (ksize - 1) // 2
        self.conv   = nn.Conv2d(in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, groups=groups, bias=bias)
        self.bn     = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.03)
        self.act    = get_activation(act, inplace=True)

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):
        return self.act(self.conv(x))


class SiLU(nn.Module):
    @staticmethod
    def forward(x):
        return x * torch.sigmoid(x)

class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6

class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)


def get_activation(name="silu", inplace=True):
    if name == "silu":
        module = SiLU()
    elif name == "relu":
        module = nn.ReLU(inplace=inplace)
    elif name == "lrelu":
        module = nn.LeakyReLU(0.1, inplace=inplace)
    else:
        raise AttributeError("Unsupported act type: {}".format(name))
    return module

2.2 yolov8_improve_sppf.yaml

Язык кода:python
кодКоличество запусков:0
копировать
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, improve_sppf, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

2.4 yolov8_improve_CA.yaml

Язык кода:python
кодКоличество запусков:0
копировать
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
  - [-1, 1, improve_CA, [1024]]  # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

2.5 yolov8_MDSConv.yaml

Язык кода:python
кодКоличество запусков:0
копировать
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  
  - [15, 1, MDSConv, [64,3]]  # 22
  - [18, 1, MDSConv, [128,3]]  # 23
  - [21, 1, MDSConv, [256,3]]  # 24

  - [[22, 23, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)

от CSDN AI, маленький монстр

Я участвую в четвертом выпуске специального учебного лагеря Tencent Technology Creation 2023 с эссе, получившими награды. Приходите и разделите приз со мной!

boy illustration
Подробное объяснение механизма подтверждения выпуска сообщений RabbitMQ.
boy illustration
На этот раз полностью поймите протокол ZooKeeper.
boy illustration
Реализуйте загрузку файлов с использованием минимального WEB API.
boy illustration
Демо1 Laravel5.2 — генерация и хранение URL-адресов
boy illustration
Spring boot интегрирует Kafka и реализует отправку и потребление информации (действительно при личном тестировании)
boy illustration
Мысли о решениях по внутренней реализации сортировки методом перетаскивания
boy illustration
Междоменный доступ к конфигурации nginx не может вступить в силу. Междоменный доступ к странице_Page
boy illustration
Как написать текстовый контент на php
boy illustration
PHP добавляет текстовый водяной знак или водяной знак изображения к изображениям – метод инкапсуляции
boy illustration
Интерпретация быстрой таблицы (TLB)
boy illustration
Интерфейс WeChat API (полный) — оплата WeChat/красный конверт WeChat/купон WeChat/магазин WeChat/JSAPI
boy illustration
Преобразование Java-объекта в json string_complex json-строки в объект
boy illustration
Примените сегментацию слов jieba (версия Java) и предоставьте пакет jar
boy illustration
matinal: Самый подробный анализ управления разрешениями во всей сети SAP. Все управление разрешениями находится здесь.
boy illustration
Коротко расскажу обо всем процессе работы алгоритма сборки мусора G1 --- Теоретическая часть -- Часть 1
boy illustration
[Спецификация] Результаты и исключения возврата интерфейса SpringBoot обрабатываются единообразно, поэтому инкапсуляция является элегантной.
boy illustration
Интерпретация каталога веб-проекта Flask
boy illustration
Что такое подробное объяснение файла WSDL_wsdl
boy illustration
Как запустить большую модель ИИ локально
boy illustration
Подведение итогов десяти самых популярных веб-фреймворков для Go
boy illustration
5 рекомендуемых проектов CMS с открытым исходным кодом на базе .Net Core
boy illustration
Java использует httpclient для отправки запросов HttpPost (отправка формы, загрузка файлов и передача данных Json)
boy illustration
Руководство по развертыванию Nginx в Linux (Centos)
boy illustration
Интервью с Alibaba по Java: можно ли использовать @Transactional и @Async вместе?
boy illustration
Облачный шлюз Spring реализует примеры балансировки нагрузки и проверки входа в систему.
boy illustration
Используйте Nginx для решения междоменных проблем
boy illustration
Произошла ошибка, когда сервер веб-сайта установил соединение с базой данных. WordPress предложил решение проблемы с установкой соединения с базой данных... [Легко понять]
boy illustration
Новый адрес java-библиотеки_16 топовых Java-проектов с открытым исходным кодом, достойных вашего внимания! Обязательно к просмотру новичкам
boy illustration
Лучшие практики Kubernetes для устранения несоответствий часовых поясов внутри контейнеров
boy illustration
Введение в проект удаления водяных знаков из коротких видео на GitHub Douyin_TikTok_Download_API